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OVERVIEWOVERVIEW

Wavelet
♥ A small wave

Wavelet Transforms
♥ Convert a signal into a series of wavelets
♥ Provide a way for analyzing waveforms, bounded in both 

frequency and duration
♥ Allow signals to be stored more efficiently than by Fourier 

transform
♥ Be able to better approximate real-world signals
♥ Well-suited for approximating data with sharp discontinuities

“The Forest & the Trees”
♥ Notice gross features with a large "window“
♥ Notice small features with a small "window”



DEVELOPMENT IN HISTORYDEVELOPMENT IN HISTORY

Pre-1930
♥ Joseph Fourier (1807) with his theories of frequency 

analysis
The 1930s

♥ Using scale-varying basis functions; computing the energy 
of a function

1960-1980
♥ Guido Weiss and Ronald R. Coifman; Grossman and Morlet

Post-1980
♥ Stephane Mallat; Y. Meyer; Ingrid Daubechies; wavelet 

applications today



PREPRE--19301930

Fourier Synthesis 
♥ Main branch leading to wavelets
♥ By Joseph Fourier (born in France, 

1768-1830) with frequency analysis 
theories (1807)

From the Notion of Frequency 
Analysis to Scale Analysis

♥ Analyzing f(x) by creating 
mathematical structures that vary in 
scale 
Ø Construct a function, shift it by some 

amount, change its scale, apply that 
structure in approximating a signal

Ø Repeat the procedure. Take that basic 
structure, shift it, and scale it again. 
Apply it to the same signal to get a new 
approximation 

Haar Wavelet
♥ The first mention of wavelets appeared 

in an appendix to the thesis of A. Haar
(1909)

♥ With compact support, vanishes 
outside of a finite interval 

♥ Not continuously differentiable 
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THE 1930THE 1930ss

Finding by the 1930s Physicist Paul Levy
♥ Haar basis function is superior to the Fourier 

basis functions for studying small complicated 
details in the Brownian motion

Energy of a Function by Littlewood, Paley, 
and Stein 
♥ Different results were produced if the energy 

was concentrated around a few points or 
distributed over a larger interval 
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19601960--19801980

Created a Simplest Elements of a Function Space, 
Called Atoms
♥ By the mathematicians Guido Weiss and Ronald R. 

Coifman
♥ With the goal of finding the atoms for a common function 

Using Wavelets for Numerical Image Processing
♥ David Marr developed an effective algorithm using a 

function varying in scale in the early 1980s

Defined Wavelets in the Context of Quantum 
Physics
♥ By Grossman and Morlet in 1980 



POSTPOST--19801980

An Additional Jump-start By Mallat
♥ In 1985, Stephane Mallat discovered some 

relationships between quadrature mirror filters, 
pyramid algorithms, and orthonormal wavelet 
bases 

Y. Meyer’s First Non-trivial Wavelets 
♥ Be continuously differentiable
♥ Do not have compact support 
Ingrid Daubechies’ Orthonormal Basis 
Functions 
♥ Based on Mallat's work 
♥ Perhaps the most elegant, and the cornerstone of 

wavelet applications today 



MATHEMATICAL MATHEMATICAL 
TRANSFORMATIONTRANSFORMATION

Why
♥ To obtain a further information from the signal 

that is not readily available in the raw signal.
Raw Signal
♥ Normally the time-domain signal
Processed Signal
♥ A signal that has been "transformed" by any of the 

available mathematical transformations 
Fourier Transformation
♥ The most popular transformation



TIMETIME--DOMAIN SIGNALDOMAIN SIGNAL
The Independent Variable is Time
The Dependent Variable is the Amplitude
Most of the Information is Hidden in the Frequency
Content
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FREQUENCY TRANSFORMSFREQUENCY TRANSFORMS

Why Frequency Information is Needed
♥ Be able to see any information that is not 

obvious in time-domain

Types of Frequency Transformation
♥ Fourier Transform, Hilbert Transform, Short-

time Fourier Transform, Wigner 
Distributions, the Radon Transform, the 
Wavelet Transform …



FREQUENCY ANALYSISFREQUENCY ANALYSIS

Frequency Spectrum
♥ Be basically the frequency components (spectral 

components) of that signal
♥ Show what frequencies exists in the signal

Fourier Transform (FT) 
♥ One way to find the frequency content
♥ Tells how much of each frequency exists in a signal
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STATIONARITY OF SIGNAL (1)STATIONARITY OF SIGNAL (1)

Stationary Signal
♥Signals with frequency content unchanged 

in time
♥All frequency components exist at all times

Non-stationary Signal
♥Frequency changes in time
♥One example: the “Chirp Signal”



STATIONARITY OF SIGNAL (2)STATIONARITY OF SIGNAL (2)
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CHIRP SIGNALSCHIRP SIGNALS

Same in Frequency Domain
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NOTHING MORE, NOTHING LESSNOTHING MORE, NOTHING LESS

FT Only Gives what Frequency Components 
Exist in the Signal
The Time and Frequency Information can 
not be Seen at the Same Time
Time-frequency Representation of the 
Signal is Needed 

Most of Transportation Signals are Non-stationary. 
(We need to know whether and also when an incident was happened.)

ONE EARLIER SOLUTION: SHORT-TIME FOURIER TRANSFORM (STFT)



SFORT TIME FOURIER SFORT TIME FOURIER 
TRANSFORM (STFT)TRANSFORM (STFT)

Dennis Gabor (1946) Used STFT
♥ To analyze only a small section of the signal at a 

time -- a technique called Windowing the Signal.
The Segment of Signal is Assumed Stationary 
A 3D transform
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DRAWBACKS OF STFTDRAWBACKS OF STFT
Unchanged Window
Dilemma of Resolution
♥ Narrow window -> poor frequency resolution 
♥ Wide window -> poor time resolution

Heisenberg Uncertainty Principle
♥ Cannot know what frequency exists at what time intervals

Via Narrow Window Via Wide Window

The two figures were from Robi Poliker, 1994



Wavelet Transform
♥ An alternative approach to the short time Fourier 

transform to overcome the resolution problem 
♥ Similar to STFT: signal is multiplied with a function

Multiresolution Analysis 
♥ Analyze the signal at different frequencies with different 

resolutions
♥ Good time resolution and poor frequency resolution at high 

frequencies
♥ Good frequency resolution and poor time resolution at low 

frequencies
♥ More suitable for short duration of higher frequency; and 

longer duration of lower frequency components

MULTIRESOLUTION ANALYSIS MULTIRESOLUTION ANALYSIS 
(MRA)(MRA)



ADVANTAGES OF WT OVER STFTADVANTAGES OF WT OVER STFT

Width of the Window is Changed as 
the Transform is Computed for 
Every Spectral Components
Altered Resolutions are Placed



PRINCIPLES OF WAELET PRINCIPLES OF WAELET 
TRANSFORMTRANSFORM

Split Up the Signal into a Bunch of Signals
Representing the Same Signal, but all 
Corresponding to Different Frequency Bands
Only Providing What Frequency Bands Exists 
at What Time Intervals



Wavelet 
♥ Small wave
♥ Means the window function is of finite length

Mother Wavelet
♥ A prototype for generating the other window 

functions
♥ All the used windows are its dilated or compressed 

and shifted versions

DEFINITION OF CONTINUOUS DEFINITION OF CONTINUOUS 
WAVELET TRANSFORMWAVELET TRANSFORM
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SCALESCALE

Scale
♥ S>1: dilate the signal
♥ S<1: compress the signal
Low Frequency -> High Scale -> Non-
detailed Global View of Signal -> Span 
Entire Signal
High Frequency -> Low Scale -> Detailed 
View  Last in Short Time
Only Limited Interval of Scales is Necessary



COMPUTATION OF CWTCOMPUTATION OF CWT

Step 1: The wavelet is placed at the beginning of the 
signal, and set s=1 (the most compressed wavelet);
Step 2: The wavelet function at scale “1” is 
multiplied by the signal, and integrated over all 
times; then multiplied by       ;
Step 3: Shift the wavelet to t=    , and get the 
transform value at t=    and s=1;
Step 4: Repeat the procedure until the wavelet 
reaches the end of the signal;
Step 5: Scale s is increased by a sufficiently small 
value, the above procedure is repeated for all s;
Step 6: Each computation for a given s fills the 
single row of the time-scale plane;
Step 7: CWT is obtained if all s are calculated.
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RESOLUTION OF TIME & RESOLUTION OF TIME & 
FREQUENCYFREQUENCY

Time

Frequency

Better time 
resolution;
Poor 
frequency 
resolution

Better 
frequency 
resolution;
Poor time 
resolution

• Each box represents a equal portion   
• Resolution in STFT is selected once for entire analysis



COMPARSION OF COMPARSION OF 
TRANSFORMATIONSTRANSFORMATIONS

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10



MATHEMATICAL EXPLAINATIONMATHEMATICAL EXPLAINATION
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DISCRETIZATION OF CWTDISCRETIZATION OF CWT

It is Necessary to Sample the Time-
Frequency (scale) Plane.
At High Scale s (Lower Frequency f ), the 
Sampling Rate N can be Decreased.
The Scale Parameter s is Normally 
Discretized on a Logarithmic Grid.
The most Common Value is 2.

1211212 NffNssN ⋅=⋅=
…81632N
…842S



EFFECTIVE & FAST DWTEFFECTIVE & FAST DWT

The Discretized CWT is not a True Discrete 
Transform
Discrete Wavelet Transform (DWT)
♥ Provides sufficient information both for analysis 

and synthesis
♥ Reduce the computation time sufficiently
♥ Easier to implement
♥ Analyze the signal at different frequency bands 

with different resolutions 
♥ Decompose the signal into a coarse 

approximation and detail information

SS

A1

A2 D2

A3 D3

D1



SUBBABD CODING ALGORITHMSUBBABD CODING ALGORITHM

Halves the Time Resolution
♥ Only half number of samples resulted
Doubles the Frequency Resolution
♥ The spanned frequency band halved

0-1000 Hz

D2: 250-500 Hz

D3: 125-250 Hz

Filter 1

Filter 2

Filter 3

D1: 500-1000 Hz

A3: 0-125 Hz

A1

A2

X[n]
512

256

128

64

64

128

256
SS

A1

A2 D2

A3 D3

D1



DECOMPOSING NONDECOMPOSING NON--
STATIONARY SIGNALS (1)STATIONARY SIGNALS (1)

Wavelet: db4

Level: 6

Signal:
0.0-0.4:  20 Hz
0.4-0.7: 10 Hz
0.7-1.0: 2 Hz

��

��



DECOMPOSING NONDECOMPOSING NON--
STATIONARY SIGNALS (2)STATIONARY SIGNALS (2)

Wavelet: db4

Level: 6

Signal:
0.0-0.4:  2 Hz
0.4-0.7: 10 Hz
0.7-1.0: 20Hz

��

��



RECONSTRUCTION (1)RECONSTRUCTION (1)

What
♥ How those components can be assembled back into 

the original signal without loss of information? 
♥ A Process After decomposition or analysis.
♥ Also called synthesis
How
♥ Reconstruct the signal from the wavelet 

coefficients 
♥ Where wavelet analysis involves filtering and 

downsampling, the wavelet reconstruction process 
consists of upsampling and filtering



RECONSTRUCTION (2)RECONSTRUCTION (2)

Lengthening a signal component by 
inserting zeros between samples 
(upsampling)
MATLAB Commands: idwt and waverec; 
idwt2 and waverec2. 



WAVELET BASESWAVELET BASES

Wavelet Basis Functions:

Derivative Of a Gaussian
M=2 is the Marr or Mexican hat wavelet

Time 
domain Frequency 

domain
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Property morl mexh meyr haar dbN symN coifN biorNr.Nd rbioNr.Nd gaus dmey cgau cmor fbsp shan 

Crude                

Infinitely regular                

Arbitrary regularity                

Compactly supported orthogonal                

Compactly supported biothogonal                

Symmetry                

Asymmetry                

Near symmetry                

Arbitrary number of vanishing moments                

Vanishing moments for                 

Existence of                 

Orthogonal analysis                

Biorthogonal analysis                

Exact reconstruction                

FIR filters                

Continuous transform                

Discrete transform                

Fast algorithm                

Explicit expression        For splines For splines       

Complex valued                

Complex continuous transform                

FIR-based approximation                

WAVELET FAMILY PROPERTIES WAVELET FAMILY PROPERTIES 



WAVELET SOFTWARE WAVELET SOFTWARE 

A Lot of Toolboxes and Software have 
been Developed
One of the Most Popular Ones is the 
MATLAB Wavelet Toolbox   
http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html



GUI VERSION IN MATLABGUI VERSION IN MATLAB

Graphical User 
Interfaces 
From the 
MATLAB prompt, 
type wavemenu, 
the Wavelet 
Toolbox Main 
Menu appears



OTHER SOFTWARE SOURCESOTHER SOFTWARE SOURCES

WaveLib [http://www-sim.int-evry.fr/~bourges/WaveLib.html] 
EPIC [http://www.cis.upenn.edu/~eero/epic.html] 
Imager Wavelet Library
[http://www.cs.ubc.ca/nest/imager/contributions/bobl/wvlt/download
/] 
Mathematica wavelet programs [http://timna.Mines.EDU/wavelets/] 
Morletpackage [ftp://ftp.nosc.mil/pub/Shensa/] 
p-wavelets [ftp://pandemonium.physics.missouri.edu/pub/wavelets/] 
WaveLab [http://playfair.Stanford.EDU/~wavelab/] 
Rice Wavelet Tools [http://jazz.rice.edu/RWT/]
Uvi_Wave Software [http://www.tsc.uvigo.es/~wavelets/uvi_wave.html] 
WAVBOX [ftp://simplicity.stanford.edu/pub/taswell/] 
Wavecompress [ftp://ftp.nosc.mil/pub/Shensa/] 
WaveThresh[http://www.stats.bris.ac.uk/pub/software/wavethresh/Wa
veThresh.html] 
WPLIB [ftp://pascal.math.yale.edu/pub/wavelets/software/wplib/] 
W-Transform Matlab Toolbox [ftp://info.mcs.anl.gov/pub/W-transform/] 
XWPL [ftp://pascal.math.yale.edu/pub/wavelets/software/xwpl/] 
…



WAVELET APPLICATIONS WAVELET APPLICATIONS 

Typical Application Fields 
♥ Astronomy, acoustics, nuclear engineering, sub-

band coding, signal and image processing, 
neurophysiology, music, magnetic resonance 
imaging, speech discrimination, optics, fractals, 
turbulence, earthquake-prediction, radar, human 
vision, and pure mathematics applications

Sample Applications
♥ Identifying pure frequencies
♥ De-noising signals
♥ Detecting discontinuities and breakdown points
♥ Detecting self-similarity
♥ Compressing images



DEDE--NOISING SIGNALSNOISING SIGNALS

Highest 
Frequencies 
Appear at the Start 
of The Original 
Signal 
Approximations 
Appear Less and 
Less Noisy
Also Lose 
Progressively More 
High-frequency 
Information. 
In A5, About the 
First 20% of the 
Signal is Truncated



ANOTHER DEANOTHER DE--NOISINGNOISING



DETECTING DISCONTINUITIES DETECTING DISCONTINUITIES 
AND BREAKDOWN POINTSAND BREAKDOWN POINTS

The Discontinuous 
Signal Consists of a 
Slow Sine Wave 
Abruptly Followed by 
a Medium Sine Wave.
The 1st and 2nd Level 
Details (D1 and D2) 
Show the 
Discontinuity Most 
Clearly 
Things to be 
Detected

♥ The site of the 
change 

♥ The type of change 
(a rupture of the 
signal, or an abrupt 
change in its first 
or second 
derivative) 

♥ The amplitude of 
the change 

Discontinuity 
Points 



DETECTING SELFDETECTING SELF--SIMILARITYSIMILARITY
Purpose
♥ How analysis by wavelets 

can detect a self-similar, 
or fractal, signal. 

♥ The signal here is the 
Koch curve -- a synthetic 
signal that is built 
recursively

Analysis
♥ If a signal is similar to 

itself at different scales, 
then the "resemblance 
index" or wavelet 
coefficients also will be 
similar at different scales. 

♥ In the coefficients plot, 
which shows scale on the 
vertical axis, this self-
similarity generates a 
characteristic pattern. 



COMPRESSING IMAGESCOMPRESSING IMAGES

Fingerprints
♥ FBI maintains a large database 

of fingerprints — about 30 
million sets of them. 

♥ The cost of storing all this data 
runs to hundreds of millions of 
dollars.

Results
♥ Values under the threshold are 

forced to zero, achieving about 
42% zeros while retaining 
almost all (99.96%) the energy 
of the original image. 

♥ By turning to wavelets, the FBI 
has achieved a 15:1 
compression ratio

♥ better than the more traditional 
JPEG compression



IDENTIFYING PURE IDENTIFYING PURE 
FREQUENCIESFREQUENCIES

Purpose
♥Resolving a signal into constituent 

sinusoids of different frequencies 
♥The signal is a sum of three pure 

sine waves
Analysis
♥D1 contains signal components 

whose period is between 1 and 2. 
♥Zooming in on detail D1 reveals 

that each "belly" is composed of 10 
oscillations. 

♥D3 and D4 contain the medium sine 
frequencies. 

♥There is a breakdown between 
approximations A3 and A4 -> The 
medium frequency been subtracted. 

♥Approximations A1 to A3 be used to 
estimate the medium sine. 

♥Zooming in on A1 reveals a period 
of around 20. 



SUMMARYSUMMARY
Historical Background Introduced
Frequency Domain Analysis Help to See any Information that is 
not Obvious in Time-domain 
Traditional Fourier Transform (FT) cannot Tell where a 
Frequency Starts and Ends
Short-Term Fourier Transform (STFT) Uses Unchanged Windows, 
cannot Solve the Resolution Problem
Continuous Wavelet Transform (CWT), Uses Wavelets as Windows 
with Altered Frequency and Time Resolutions
Discrete Wavelet Transform (DWT) is more Effective and Faster
Many Wavelet Families have been Developed with Different 
Properties
A lot of Software are available, which Enable more Developments 
and Applications of Wavelet
Wavelet Transform can be used in many Fields including 
Mathematics, Science, Engineering, Astronomy, …
This Tutorial does not Cover all the Areas of Wavelet 
The theories and applications of wavelet is still in developing 
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Questions ?


