Workshop 118 on Wavelet Application“in-Transportation Engineering,
Sunday, January 09, 2005

o

Introduction to Wavelet
[1 A Tutorial

o~
Oy B

= ™
B

Fengxiang Qiao, Ph.D.
Texas Southern University




5 Overview
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> Wavelet Analysis

® Tools and Software

» Typical Applications

® Summary
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© Wavelet
v A small wave

© Wavelet Transforms

v Convert a signal into a series of wavelets
v Provide a way for analyzing waveforms, bounded in both

frequency and duration

v Allow signals to be stored more efficiently than by Fourier
transform

v Be able to better approximate real-world signals
v Well-suited for approximating data with sharp discontinuities

£ “The Forest & the Trees”

v Notice gross features with a large "window*
v Notice small features with a small "window”




DEVELOPMENT IN HISTORY-

' Pre-1930

v Joseph Fourier (1807) with his theories of frequency
analysis

» The 1930s

v Using scale-varying basis functions; computing the energy
of a function

1960-1980

v Guido Weiss and Ronald R. Coifman; Grossman and Morlet

» Post-1980

v Stephane Mallat; Y. Meyer; Ingrid Daubechies; wavelet

applications today “‘(‘
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Fourier Synthesis
v Main branch leading to wavelets

v By Joseph Fourier (born in France,
1768-1830) with frequency analysis
theories (1807)

From the Notion of Frequency
Analysis to Scale Analysis

v Analyzing f(x) by creating
mathematical structures that vary in
scale

Construct a function, shift it by some

amount, change its scale, apply that
structure in approximating a signal

Repeat the procedure. Take that basic
structure, shift it, and scale it again.
Apply it to the same signal to get a new
approximation

Haar Wavelet

The first mention of wavelets appeared
in an appendix to the thesis of A. Haar
(1909)

With compact support, vanishes
outside of a finite interval

Not continuously differentiable

Jean-Baptiste-Joseph Fourier
{1768-1830)




 THE 1930*

® Finding by the 1930s Physicist

v Haar basis function is superior to the Fourier
basis functions for studying small complicated
details in the

® Energy of a Function by Littlewood, Paley,
and Stein
v Different results were produced if the energy

was concentrated around a few points or
distributed over a larger interval




® Created a Simplest Elements of a Function Space,
Called Atoms

v By the mathematicians Guido Weiss and Ronald R.
Coifman

v With the goal of finding the atoms for a common function

& Using Wavelets for Numerical Image Processing

v David Marr developed an effective algorithm using a
function varying in scale in the early 1980s

® Defined Wavelets in the Context of Quantum
Physics
v By Grossman and Morlet in 1980




® An Additional Jump-start By Mallat

v In 1985, Stephane Mallat discovered some
relationships between quadrature mirror filters,
pyramid algorithms, and orthonormal wavelet
bases

® Y. Meyer’s First Non-trivial Wavelets
v Be continuously differentiable
v Do not have compact support

® Ingrid Daubechies’ Orthonormal Basis
Functions

v Based on Mallat's work

v Perhaps the most elegant, and the cornerstone of
wavelet applications today




® Why

v To obtain a further information from the signal
that is not readily available in the raw signal.

® Raw Signal

v Normally the time-domain signal

® Processed Signal

v A signal that has been "transformed'" by any of the
available mathematical transformations

© Fourier Transformation

v The most popular transformation M
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® The Independent Variable is

» The Dependent Variable is the

® Most of the Information is Hidden in the
Content
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FREQUENCY TRANSFORMS~

® Why Frequency Information is Needed

v Be able to see any information that is not
obvious in time-domain

®© Types of Frequency Transformation

v Fourier Transform, Hilbert Transform, Short-
time Fourier Transform, Wigner
Distributions, the Radon Transform, the
Wavelet Transform ...




FREQUENCY ANALYSIS —

® Frequency Spectrum

v Be basically the frequency components (spectral
components) of that signal

v Show what frequencies exists in the signal
® Fourier Transform (FT)

v One way to find the frequency content
v Tells how much of each frequency exists in a signal
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STATIONARITY OF SIGNAL (1)4
® Stationary Signal
v Signals with frequency content unchanged
in time
v All frequency components exist at all times

® Non-stationary Signal
v Frequency changes in time

v One example: the “




0.0-0.4: 2Hz +
0.4-0.7: 10 Hz +
0.7-1.0: 20Hz

2 Hz + 10 Hz + 20Hz

Magnitude

Magnitude

oo Occ rat alltlmes

Magnitude
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Do not appear at all times

5‘ 1‘0 1‘5 2‘0
Frequency (Hz)



20 Hz to 2 Hz
Frequency (Hz)

-

Frequency

Time

apnliuben

Frequency (Hz)

m.
m

2 Hz to 20 Hz

(<))
]
)

(@)

(e

(e

©

(&)
T
LL
n/.
S

£S5

O
(&)
(@)
n
-]
(o
()]
(o
»)
ON
£
o
(&)

>

(@)
=
((b)

=

(@
()
p -
[—
()
S
)
()
S
-
Fa)
(qv]
LS
=
)
<

Time

Frequency

apniiubep

&




- — S
NOTHING MORE, NOTHING LESS

© FT Only Gives what Frequency Components
Exist in the Signal

® The Time and Frequency Information can
not be Seen at the Same Time

¢ Time-frequency Representation of the
Signal is Needed

Most of Transportation Signals are Non-stationary.

(We need to know whether and also when an incident was happened.)

‘ ONE EARLIER SOLUTION: SHORT-TIME FOURIER TRANSFORM (STFT) ‘




SFORT TIME-FOURIER
TRANSFORM (STFT)

@ Dennis Gabor (1946) Used STFT

v To analyze only a small section of the signal at a
time -- a technique called Windowing the Signal.

¢ The Segment of Signal is Assumed Stationary

& A 3D transform




¢ Unchanged Window

© Dilemma of Resolution
v Narrow window -> poor frequency resolution
v Wide window -> poor time resolution
€ Heisenberg Uncertainty Principle
v Cannot know what frequency exists at what time intervals

A
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MULTIRESOLUTION ANALYSIS®

® Wavelet Transform

v An alternative approach to the short time Fourier
transform to overcome the resolution problem

v Similar to STFT: signal is multiplied with a function

® Multiresolution Analysis

v Analyze the signal at different frequencies with different
resolutions

v Good time resolution and poor frequency resolution at high
frequencies

v Good frequency resolution and poor time resolution at low
frequencies

v More suitable for short duration of higher frequency; and
longer duration of lower frequency components
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ADVANTAGES OF WT OVER STFT

@ Width of the Window is Changed as
the Transform is Computed for

Every Spectral Components
© Altered Resolutions are Placed




® Split Up the Signal into a Bunch of Signals
® Representing the Same Signal, but all

Corresponding to Different Frequency Bands

® Only Providing What Frequency Bands Exists
at What Time Intervals




DEFINITION-OF CONTINUOUS %
WAVELET TRANSFORM

f S

© Wavelet

v Small wave
v Means the window function is of finite length

© Mother Wavelet

v A prototype for generating the other window
functions

v All the used windows are its dilated or compressed
and shifted versions




® Scale
v S>1: dilate the signal
v S<1: compress the signal

®» Low Frequency -> High Scale -> Non-
detailed Global View of Signal -> Span
Entire Signal

» High Frequency -> Low Scale -> Detailed
View Last in Short Time

» Only Limited Interval of Scales is Necessary




COMPUTATION OF CWT

CWT Y (t,5)= Wi (1,8)= Jlgfx(ty w(t:j

Step 1: The wavelet is placed at the beginning of the
signal, and set s=1 (the most compressed wavelet);

Step 2: The wavelet function at scale “1” is
multiplied by the signal, and integrated over all
times; then multiplied byi//s ;

Step 3: Shift the wavelet to t= T , and get the
transform value at t=T and s=1;

Step 4: Repeat the procedure until the wavelet
reaches the end of the signal;

Step 5: Scale s is increased by a sufficiently small
value, the above procedure is repeated for all s;

Step 6: Each computation for a given s fills the
single row of the time-scale plane;

Step 7: CWT is obtained if all s are calculated.




RESOLUTION OF TIME & . :
F HOLUHRRN CY

V4 Better time
/ resolution;
Poor
frequency
resolution

Better
frequency k
esoution;: WP

Poor time

» Each box represents a equal portion
* Resolution in STFT is selected once for entire analysis




COMPARSION OF
TRANSFORMATIONS

A time series * Fourier transform

frequency
frequency

-

short-time Fourier transform

A * wavelet transform

time time

frequency
frequency

%

- 8

time time

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10
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MATHEMATICAL EXPLAINATION

CWT can be regarded as the inner product
of the signal with a basis function




DISCRETIZATION OF CWT=

® It is Necessary to Sample the Time-
Frequency (scale) Plane.

® At High Scale s (Lower Frequency f), the
Sampling Rate N can be Decreased.

® The Scale Parameter s is Normally
Discretized on a Logarithmic Grid.

® The most Common Value is 2.

N, =5/, [N, = f,/f, [N, EEEE=




EFFECTIVE & FAST DWT —

& The Discretized CWT is not a True Discrete
Transform

¢ Discrete Wavelet Transform (DWT)

v Provides sufficient information both for analysis
and synthesis

v Reduce the computation time sufficiently
v Easier to implement

v Analyze the signal at different frequency baige
with different resolutions D |

v Decompose the signal into a coarse 'm‘l
D2
N >

approximation and detail information
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SUBBABD CODING ALGORITHM/

® Halves the Time Resolution
v Only half number of samples resulted

® Doubles the Frequency Resolution
v The spanned frequency band halved

256
X[n] ‘l‘
L} Filter 2 [Lpmee
A, I- 128
l Filter 3 lm—
A, 64

Aj:




| Histograms

Display mode :

Full Decomposition

at lewe| 5

[ ] 8how Synthesized Sig.

Signal:
0.0-0.4: 20 Hz
0.4-0.7: 10 Hz
0.7-1.0: 2 Hz

Wavelet: db4

Level: 6




Data (Size) wnl (1001}

Wavelet dio 4

Lewel 5

-I fL | Analyze |

Statistics | | Compress |

Histograms

| De-noise |

| || isplay mode :
|| '|u| | || | | l| || || | | || '| | Full Decomposition

at level 5

R
Slgnal

0.0-0.4: 2 Hz
0.4-0.7: 10 Hz
0.7-1.0: 20Hz

Wavelet: db4

Level: 6




RECONSTRUCTION (1)~ —

© What

v How those components can be assembled back into
the original signal without loss of information?

v A Process After decomposition or analysis.
v Also called synthesis

© How

v Reconstruct the signal from the wavelet
coefficients

v Where wavelet analysis involves filtering and
downsampling, the wavelet reconstruction process
consists of upsampling and filtering




® Lengthening a signal component by
inserting between samples
(upsampling)

© MATLAB Commands: and

and




c. DOG (m=2)

B 0.3} 6
4 ; - 4
: 0.0
2 | | T 2
{] 1 1 " : 1 1 _D-S 1 1 1 1 1 1 1 ] D 1 1 1
2 1 0 1 2 4 2 0 2 4 -2
s o/ (2n) tis
d. DOG (m=6)

0.3 0.3F

un-f“ /\ A )

4 2 0 2 4 -2
t/s s m/ (2m)

0.0

Wavelet Basis Functions: [Y{EACNSRT= 11D E T gl 2

Paul (m=order): DOG-"—— 2 rri (1 in)

m+1 m
DOG (m = derivative): § 1) : (é” /2)
Derivative Of a Gaussian \/ r(m + ) drl
2

M=2 is the or wavelet



WAVELET FAMILY PROPERTIES

Property morl | mexh | meyr | haar | dbN | symN | coifN | biorNr.Nd | rbioNr.Nd | gaus | dmey | cgau | cmor | fbsp | shan
Crude . . . . . . .
Infinitely regular . ' ’ . . . . .
Arbitrary regularity ] . . . .
Compactly supported orthogonal . . . .
Compactly supported biothogonal . .
Symmetry . (] ] . . . . ] . . . .
Asymmetry .
Near symmetry ' .
Arbitrary number of vanishing moments ] . . . .
Vanishing moments for [ .
Existence of ¢ . . ' . . . .
Orthogonal analysis ' ] ] ' .
Biorthogonal analysis . . . . . . .
Exact reconstruction = ] ' . . . . . . . = . . . .
FIR filters . ‘ ‘ . é . i
Continuous transform ] ] ' ] ] . ] . . .
Discrete transform ’ . . . . . . .
Fast algorithm ] ] . ] ] . '
Explicit expression . . . For splines | For splines | e . . . .
Complex valued . . . .
Complex continuous transform . . 8 8
FIR-based approximation .




© A Lot of Toolboxes and Software have
been Developed

®> One of the Most Popular Ones is the
MATLAB Wavelet Toolbox

http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html

7 Wavelet Toolbox - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

ﬂ EI ;j /'-.: Search "-]’ Favorites ﬁ:" f 2 - __,_ L ' '@;5 'ﬁﬂ ﬁ &J i‘-‘

-

comjaccess/helpdeskl helpltoolboxwaveletivwavelet bl V: 30 -

Links

Search Web 3'_:"ljv HEW Toolbar Update - | E=d mail = @My Yahoo! EGames - [ffl Shopping = %7 Personals -

GGDglE' - Jand Associated F‘rnperties"ﬂ @.} Search'Web - @ EI 26 blocked 1= E Options 4 @ Wavelet Families and Associated Properties

home ®store contactus site help
< J The MathWorks worldwide e —

Products & Services | Industries | Academia | Support | User Community |[Company

Moarnmeantatinn = Wavalat Toalhoow

Contents.

Wavelet Toolbox

Zetting Started




Graphical User
Interfaces

From the

MATLAB prompt,

type ’
the Wavelet

Toolbox Main
Menu appears

I

=/ Wawvelet Toolbox Main Menu

File  wWindow Help

One-Dimensional

Specialized Tools 1-Dr

Wavelet 1-D

WWavelet Packet 1-D

Continuous Wavelet 1-D

=
|
|
|

Complex Continuous Wavelet 1-D

|
|
|
l

Two-Dimensional

’ SWT De-noising 1-D ]
[ Density Estimation 1-D ]

Regression Estmation 1-D

[ Wavelet Coefficients Selection 1-D ‘

[Frax:t'una] Brownian Generation 1—D‘

Wavelet 2-D

Specialized Tools 2-0

Wavelet Paclket 2-D

Display

Wavelet Display

Wavelet Paclkket Display

| SWT De-noising 2-D |

| Wavelet Coefficients Selection 2-D |

[ Image Fusion |

Extension

Wavelet Design

Mew Wavelet for CWT

Signal Extension

Image Extension
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OTHER SOFTWARE SOURCES

[http://www-sim.int-evry.fr/~bourges/WaveLib.html]
[http://www.cis.upenn.edu/~eero/epic.html]

[http://www.cs.ubc.ca/nest/imager/contributions/bobl/wvlt/download

[http://timna.Mines.EDU/wavelets/]
[ftp://ftp.nosc.mil/pub/Shensa/]
[ftp://pandemonium.physics.missouri.edu/pub/wavelets/]
[http://playfair.Stanford. EDU/~wavelab/]
[http://jazz.rice.edu/RWT/]
[http://www.tsc.uvigo.es/~wavelets/uvi_wave.html]
[ftp://simplicity.stanford.edu/pub/taswell/]
[ftp://ftp.nosc.mil/pub/Shensa/]

[http://www.stats.bris.ac.uk/pub/software/wavethresh/Wa
veThresh.html]

[ftp://pascal.math.yale.edu/pub/wavelets/software/wplib/]
[ftp://info.mcs.anl.gov/pub/W-transform/]
[ftp://pascal.math.yale.edu/pub/wavelets/software/xwpl/]

e
e
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WAVELET APPHCATIONS =

® Typical Application Fields

v Astronomy, acoustics, nuclear engineering, sub-
band coding, signal and image processing,
neurophysiology, music, magnetic resonance
imaging, speech discrimination, optics, fractals,
turbulence, earthquake-prediction, radar, human
vision, and pure mathematics applications

® Sample Applications

v Identifying pure frequencies

v De-noising signals

v Detecting discontinuities and breakdown points

v Detecting self-similarity

v Compressing images




®» Also Lose

% In Ay, About the

® Highest
Frequencies
Appear at the Start
of The Original
Signal

®» Approximations
Appear Less and
Less Noisy

Proﬁresswely More
-frequency
Information.

Fll‘St 20% of the

Signal is Truncated:

Original and de—noised signals

wilVs

200 400 600 800 1000

Example Analysis
Moisy Doppler



Original Image Noisy Image

% Use wdencmp for image de-noising.

% ind default values (see ddencmp).
[thr sorh keepapp] =ddencmp{"den” “wWwv" x);

% denoise image using global thresholding option.
»d =wdencmp{‘gbl " x ‘sym4" 2 thr sorh keepapp);




DETECTING-DISCONTINUITIES ;-
AND BREAKDOWN POINTS — .

The Discontinuous
Signal Consists of a
Slow Sine Wave

Abruptly Followed by
a Medium Sine Wave.

® The 15t and 2" Level

Details (D, and D,)
Show the
Discontinuity Most
Clearly

» Things to be

Detected

v The site of the
change

v The type of change
(a rupture of the
signal, or an abrupt
change in its first
or second
derivative)

v The amplitude of
the change

Signd and Spproximations

[/
)
{\/\/—
ol
N/

_ ""lIll|1|l|;‘.‘.‘1‘4‘1‘1‘15[::;;r"“

a0 40 B0 S0

-0z

Signdl and Dietals

:: VAV

“]]HHHHHH[HHH
Hlllluumﬂll”

Example Analysis

Frequency
breakdown

MAT-file
fregbrk.mat

Wavelet
dbs

Level
5

Discontinuity
Points




DETECTING SELF-SIMILARITY

¢ Purpose

v How analysis by wavelets
can detect a self-similar,
or fractal, signal.

Analyzed Signal (Ength=8183) | Example Analysis

I | Koch curve

v The signal here is the mAT-fle
Koch curve -- a synthetic || = = . .
signal that is built P DL

vonkoch.mat

recursively
® Analysis

v If a signal is similar to
itself at different scales,
then the "resemblance
index" or wavelet
coefficients also will be
similar at different scales.

In the coefficients plot,
which shows scale on the
vertical axis, this self-
similarity generates a
characteristic pattern.

Continuous, 2:2:128

g M ERBEAERE




e Fingerprints T

v FBI maintains a large database  "[i{ii "% ’f',.g

of fingerprints — about 30 e
million sets of them. T B -

v The cost of storing all this data

runs to hundreds of millions of
dollars.

Example Analysis
Finger

© Results

v Values under the threshold are
forced to zero, achieving about
42% zeros while retaining
almost all (99.96%) the energy
of the original image.

By turning to wavelets, the FBI
has achieved a 15:1
compression ratio

better than the more traditional _
JPEG compression




IDENTIFYING PURE |
FREQUENCIES —

“Purpose .

Bigral and Approximatien(s)
v Resolving a signal into constituent -
sinusoids of different frequencies

v The signal is a sum of three pure
sine waves

©Analysis

v D1 contains 51gnal components
whose period is between 1 and 2. A AR 1|||,|||J|I||.|.|| |[||| ||‘|| ||'L|;||

v Zooming in on detail D1 reveals g, of VL) o AR \ il
that each "belly" is composed of 10 l ||||| | I | ||‘||r II ||| I
oscillations. '

v D3 and D4 contain the medium 51m=.il
frequencies.

v There is a breakdown between
approximations A3 and A4 -> The .“
medium frequency been subtracted.?, 1""' ! ' ‘a n|'|""|""' "

I|

v Approximations Al to A3 be used to a1

estimate the medium sine. ) nn | I| TR T T R e
v Zooming in on Al reveals a period a, E 0 d,
of around 20. 1 '|"' 4 e T N

Eﬂ 410 =0 =0 o000 M0 4m EN B o000

||.i ||| |I.||| ||r '.|'|
‘..|’| l.llll'rl Ill'l|"| .I|II||I.I| | |ﬂ|
| |'.1a|['1 |1.'l_||' | '||,'|'1|| ","' | Jﬁ




Historical Background Introduced

Frequency Domain Analysis Help to See any Information that is
not Obvious in Time-domain

Traditional Fourier Transform (FT) cannot Tell where a
Frequency Starts and Ends

Short-Term Fourier Transform (STFT) Uses Unchanged Windows,
cannot Solve the Resolution Problem

Continuous Wavelet Transform (CWT), Uses Wavelets as Windows
with Altered Frequency and Time Resolutions

Discrete Wavelet Transform (DWT) is more Effective and Faster

Many Wavelet Families have been Developed with Different
Properties

> A lot of Software are available, which Enable more Developments

and Applications of Wavelet

Wavelet Transform can be used in many Fields including
Mathematics, Science, Engineering, Astronomy, ...

This Tutorial does not Cover all the Areas of Wavelet
The theories and applications of wavelet is still in developing
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Questions ?




